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A stochastic model for growth and size distribution in plant populations 
is proposed, which is described by the Kolmogorov forward equation 
(diffusion equation). The moments of size distribution are calculated based 
on the diffusion process. Theoretical analyses are made of the mechanisms 
and the dynamics of size distribution pattern of an even-aged plant popula- 
tion based on the experiemntal data of Impatiens balsamina L. Plant height, 
stem diameter and individual plant weight have their specific size-depen- 
dent growth pattern, and show almost normal, positively skewed and more 
positively skewed size distribution, respectively. The stochastic model 
incorporating size-dependence of individual growth explains these 
phenomena theoretically. The ecological meaning of the growth and size 
distribution patterns is discussed. The hypothesis that dry matter produc- 
tion by photosynthesis is first allocated to height growth and then to diameter 
growth is proposed. 

1. Introduction 

Size distribution in biological populations is a main concern to biologists, 
because it reflects the dynamics of  population growth. Analyses of  size 
distribution provide information on the structure and the function o f  biologi- 
cal populations. 

Theoretical analyses of  plant community growth have been made on 
mean plant size basis, i.e. from the populational level (e.g. Shinozaki & 
Kira, 1956; Hozumi, 1977, 1980), but Koyama & Ydra (1956) pointed out 
the importance of  studying plant size distributions. Many researchers fol- 
lowed this line of  study (e.g. Kuroiwa, 1959, 1960a, b; Obeid, Machin & 
Harper,  1967; White & Harper,  ! 970; Ford, 1975; Mohler, Marks & Sprugel, 
1978). 

I carried out a field experiment with even-aged annual plants to investigate 
the dynamics of plant population growth. Based on these experimental data, 
I propose a stochastic model for individual plant size growth in a population,  
and start with the Kolmogorov forward equation (diffusion equation) as a 

173 

0022-5193/84/140173 + 18 $03.00/0 © 1984 Academic Press Inc. (London) Ltd. 



174 T. HARA 

basic equation. I determine the coefficients involved in the equation from 
the experimental data, and present the actual growth pattern of individual 
plant size. The growth pattern is size-dependent; plant height (H), stem 
diameter (D) and individual plant weight (W) have their specific growth 
pattern. Next, I calculate the moments of size distribution based on the 
diffusion process, and make theoretical analyses of the mechanisms and 
the dynamics of size distribution pattern based on the experimental data. 

Size distribution pattern is divided into three types, i.e. symmetrical (or 
normal), negatively skewed and positively skewed distribution. Out of these 
distributions, the positively skewed one is often met with in biological 
phenomena (Koch, 1966, 1969). Koyama & Kira (1956) made an attempt 
to explain how positive skewness appears in individual plant weight distribu- 
tion. Ford (1975) claimed that size distributions of intensively self-thinning 
plant populations are biomodal. Gates (1978) and Ford & Diggle (1980) 
explained this phenomenon with theoretical models. A strict test of bi- 
modality is a very difficult and a subtle problem. In many cases, size 
distribution can be roughly approximated by a unimodal curve. If we assume 
unimodality, we immediately know the shape of the size distribution curve 
from some moments. For simplicity, I assume unimodality and ignore the 
question of biomodality for the moment. 

The main concerns of this paper are the mechanisms and the dynamics 
of size distribution pattern. For this purpose, the dynamics of some moments 
are analyzed. 

The stochastic model which is described by the Kolmogrov forward 
equation and incorporates size-dependence of individual growth reveals 
that the size-dependent growth pattern determines its size distribution 
pattern. Therefore, we can explain by this model the phenomenon that D 
and W have positively skewed distribution while H has an almost normal 
distribution. 

I discuss the ecological meaning of the growth and size distribution 
pattern as important factors in the competition for light, and present a 
hypothesis on the basic property of plant growth in a population. 

2. Materials and Methods 

I carried out a field experiment with Impatiens balsamina L. at the 
Botanical Garden, Faculty of Science, Kyoto University, in 1977. Seeds 
were sown randomly on a 3 x6 m plot on 3 September. All plants within 
three randomly distributed 30×30cm quadrats were marked and their 
individual growth in height and diameter at ground level was recorded. The 
initial density was 833 m -2 and five measurements were made at 10-day 
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intervals; the first measurment on 27 September (tO, and the last on 6 
November (ts). Flowering commenced at t4-t 5. At each measurement time, 
twenty plants were randomly sampled outside the quadrats and their heights, 
stem diameters at ground level, and dry (80°C for two days) weights of  stem 
and leaf were measured. Dry weights of  stem and leaf of  all marked plants were 
estimated by the allometric relationships derived from the data of  twenty 
sampled plants. 

3. A Basic Equation 

We consider how size distribution changes as a population grows. Let us 
consider the growth of  individual size as a diffusion process {X,}, t ~ T =  
[0, oo). Denote the distribution density of  X, by f(t ,  x). The total number  
at time t, N(t) ,  is given by 

N(t)  = No I f( t ,  x) dx, (1) 
d E 

where No is the total number  at t = 0 and E = [A, B] is the state space. 
The diffusion process {X,} is associated with the following Kolmogorov 

forward equation (diffusion equation) (Kolmogoroff,  1931 ; Gnedenko,  1962; 
Dynkin, 1965; Cox & Miller, 1972; Karlin & Taylor, 1981): 

0 1 0 2 
~tf (  t , x ) = ~  ~xz[ D( t, x l f (  t, x)] 

0 
--~x[ G( t, x) f(  t, x ) ] -  M ( t, x)f(  t, x), 

x ~ E = [A, B], t ~ T = [0, oo). (2) 

G(t, x) is the drift coefficient or the infinitesimal mean, and D(t, x) is the 
diffusion coefficient or the infinitesimal variance. They are written as follows: 

1 
limh~o h EE AhX' I X' = x] = G (  t, x ) ,  (3) 

1 
limh,o h V[AhX' IX, = x] = D(t, x), (4) 

where AhX, = X,+~, - X,. M(t,  x) is the termination coefficient, and represents 
the instantaneous mortality per unit time. If the diffusion process is conserva- 
tive, then M(t,  x) = O. 

I use equation (2) as a basic equation for the analysis. By solving equation 
(2), we can get f( t ,  x) and simulate the dynamics of  size distribution pattern. 
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Generally, we cannot have the analytical solution to equation (2). We can 
only solve it numerically. 

To solve equation (2), we first determine the coefficients G(t, x), D(t, x) 
and M(t, x). To clarify the actual growth pattern of individual size, I employ 
the empirical way, i.e. determine these coefficients from the experimental 
data. We approximate infinitesimal G(t, x), D(t, x) and M(t, x) by finite 
time interval. 

t 2 3 " ' "  n 1 2 3 . . .  /~ • , 
Y 

fr~ 

Time r T imer+~x r  ( = n - L )  

FIG. 1. D i a g r a m m a t i c  e x p l a n a t i o n  h o w  to  d e t e r m i n e  G(t, x) ,  D(t, x) a n d  M(t, x) f r o m  the  
e x p e r i m e n t a l  d a t a .  P l an t  h e i g h t  is t a k e n  as size. F o r  the  de ta i l s ,  see the  text .  

Take plant height as size, for example (Fig. 1). Let n be the number of 
plants of size ~ at time r. These plants grow or die after Az, and let I and 
rn be the numbers of the live and the dead plants at time z +At, respectively. 
When individual plants 1, 2, 3 , . . . ,  ! grow in size respectively by Aft, A~2 , 
~ 3 , - - . ,  z~, during At, quantities of G(r, so), D(z, s c) and M(r, ~:) are given 
as follows: 

1 - -  1 1 t 

I i 
D(r, ~) 1 ,~, (A¢,- ~--~): 

= ~-~rl{ 1 ~ (A~')2- (~--~)2 } ' ~  ,=, , (6) 

1 rn 
M(r, ~) - Ar n (n = 1 + m). (7) 

Calculating for every ¢ and r ,we  obtain G(t, x), D(t, x) and M(t, x). 
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G(t, x) is mean growth of size x at time t per unit time. D(t, x) is variance 
of growth of size x at time t per unit time, which is generated by the 
fluctuation of growth. M(t, x) is mortality of size x at time t per unit time 
due to self-thinning. If all plants of the same size grow by the same quantities, 
D(t, x) is equal to zero. In this case, the Kolmogorov forward equation (2) 
reduces to the continuity equation, 

a a 
~f(t, x) +~x [G(t, x)f(t, x)] = -M(t, x)f(t, x). (8) 

Many researchers have applied the continuity equation to ecological prob- 
lems, mainly age and size structures of cell and animal populations (see 
Okubo, 1980). 

4. Results of the Experiment 

(A) ESTIMATION OF I N D I V I D U A L  PLANT W E I G H T  

Allometric relationship between individual stem weight (y), plant height 
(xl) and stem diameter (x2) is given by 

log y = a0 +a~ log xj +a2 log x2, (9) 

where ao, aj and a2 are constants specific to each growth stage. These values 
were calculated by the multiple regression from the data of twenty sampled 
plants at each stage. Obtained al's and a2's are nearly equal to l and 2, 
respectively, irrespective of growth stages. For simplicity, let stem weight 
stand for plant weight. Individual plant weights of all marked plants were 
estimated by equation (9) at each growth stage. 

(B) GROWTH PATTERN 

For the data analysis, I used all plants from two quadrats neglecting one 
for its poor growth. The number of plants was initially 145 and decreased 
successively to 96 in the final stage due to self-thinning. Figs 2, 3 and 4 
show respectively G(t,x)-x, D(t ,x) -x  and M(t ,x ) -x  relationships at 
each growth stage for plant height (H), stem diameter (D) and individual 
plant weight (W). Size-dependence is noted in all the results, but obviously 
H, D and W have ditIerent types of size-dependence. The condition X, = x 
in equations (3) and (4) is interpreted biologically as size-dependence of 
individual growth. The next growth of a plant is determined by its present 
size in a population. We can approximate all G(t, x) and D(t, x) by the 
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FIG. 2. Mean growth of  size per unit time, G(t, x )~  size, x relationships at each growth 
stage empirically obtained from the experimental data of  Impatiens balsamina. Subscripted t 
indicates successive growth stages when the measurements were made;  t~ is 24 days after 
sowing, and time interval between two successive growth stages is 10 days. (a) Plant height 
(cm); (b) stem diameter (mm) and (c) individual plant weight (g) are taken as size. O, observed 
value; - - . ,  regression by equation (10). 

polynomial equations of  at most degree two, 

G(t, x) = ag(t) + bg(t)x + cg(t)x 2, (10) 

D(t, x) = ad(t) + bd(t)x + Cd(t)x 2. (11) 

AS to H, both G(t, x ) - x  and D(t, x ) -  x relationships show straight lines 
with positive slopes throughout the growth period, i.e. cg(t), Cd(t)= 0 and 
b~(t), bd(t)>O for any t, and the slopes flatten gradually as a population 
grows. In the final stage, both G(t, x) and D(t, x) have almost constant 
values near zero irrespective of  size x. In the case of  as(t) = 0, mean growth 
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FIG.  3. V a r i a n c e  o f  g r o w t h  o f  s ize  per  unit  t ime,  D(t, x ) ~ s i z e ,  x re la t ionsh ips  at e a c h  
g r o w t h  s tage  o f  Impatiens balsamina. The detai l s  are the s a m e  as in Fig.  2. 

of  H per unit time is proportional to its present size, i.e. H has constant 
RGR irrespective of  size. The same G(t, x ) - x  relationship of  H is also 
found in Fig. 3 of  Mohler et al. (1978) for natural stands of  Prunus pensyl- 
vanica. 

As to D, G(t, x ) - x  relationship shows a complicated pattern. But it 
shows the same time trend as that of  H. Values of  G(t, x) decrease as a 
population grows, and keep almost constant values in the final stage. In 
the first stage, G(t, x ) - x  relationship is a convex curve, i.e. % ( 0 > 0 .  In 
the second and third stages, it is a concave curve, i.e. c~ ( t )<0 .  G(t, x ) - x  
relationship in the second stage can be also approximated by a hyperbolic 
curve, which was obtained by Nagano (1978) for Minamata forest stands. 
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F1G. 4. Mortality per unit time, M ( t , x ) ~ s i z e ,  x relationships at each growth stage of  
Impatiens balsamina. The details are the same as in Fig. 2. Solid symbols indicate the observed 
values: , ,  t2-t3; &, t3-t4; 0 ,  t4-t~. Self-thinning does not occur at t r t  2. Solid curves indicate 
regression by equation (12). (a) Height (era); (b) diameter (ram); (c) weight (g). 

The same relationship and time trend are found in Fig. 2 of  Mohler et al. 
(1978) for natural stands of  Prunus pensylvanica. 

As to W, G( t , x ) - x  relationship is a convex curve (i.e. c~(t)>0) in the 
early stages, and almost a constant near zero in the later stages. The same 
relationship in the early stages is found in Fig. 3 of  Kuroiwa (1960a) for 
Abies stands. In the case of  % ( 0  = 0, this means that relative growth rate 
( R G R ) - x  relationship of W is a straight line with positive slope. This is 
also found in Fig. 8 of  Ford (1975) for Tagetes patuta. 

D(t, x ) - x  relationships of  D and W show somewhat scattered compli- 
cated pattern, but all D(t, x)'s can be approximated by equation (I 1). In 
the early stages, they are positively correlated with size x. Random environ- 
ment, competition between neighbouring plants, etc. generate D(t, x). Even 
plants of  the same size cannot have the same growth rate. For example, 
even if two plants are of  the same size, one with large neighbours has 
smaller growth rate than another  with small neighbours due to the more 
intense suppression. This effect is expressed by D(t, x), which is interpreted 
as fluctuation of growth. 

M(t, x)'s of  H, D and W take the same form, a convex curve such that 
M(t, x)~O as x ~  + ~ .  I empirically employ the following equation, 

M(t,x)=exp(a+bx) (b <0).  (12) 

5. Moment Dynamics of Size Distribution 

Let g(t, x) be any twice continuously differentiable function defined on 
T x E. Denote (g(t, x)), expectation of g(t, x), by 

(g(t,x))=feg(t,x)f(t,x)dx/f f ( t ,x)  dx. (13) 
E 
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Let mk and /Zk be the kth moments about the origin and about the mean 
respectively given as follows: 

mk= (xk), (14) 

~k =((x-(x))k). (15) 

This paper deals with growth only in the vegetative stage, and I impose the 
boundary conditions 

f ( t ,  A) =f( t ,  B) = 0, (CI) 

to distinguish vegetative stage from reproductive one. Neither inflow nor 
outflow of probability occur at the boundaries x = A, B until Xt first reaches 
them. Therefore, until the first passage time (i.e. during the vegetative stage) 
the probability current J = G(t, x)f(t ,  x)-(1/2)O[D(t ,  x)f(t ,  x)]/Ox is equal 
to zero at x =  A, B. 

Now, we can calculate the time rate of change in mk and /Zk during the 
vegetative stage from equation (2) as follows: 

d 
- - m k  = ½k( k - l )(xk- 2 D( t, x)) 
dt 

+ k(x k-E G(t, x)) - Coy {x k, M(t ,  x)}, (16) 

d 
~tt l~k = ½k( k - 1)((x- (x) )k-2 D( t, X)) 

+k Cov {(x - ( x ) )  k-I, G(t, x)} 

- C o v  {(x-(x))  k, M(t ,  x)} 

+ k ( ( x - ( x ) )  k-') Cov {x, M(t,  x)}. (17) 

In this paper, I deal with plant populations where, for simplicity of analysis 
self-thinning does not occur. Low intensity of self-thinning observed in the 
experiment with Impatiens balsamina L. hardly affects the shape of size 
distribution curves (Fig. 8). Therefore, I set M ( t, x) = 0 in this paper. We want 
to know how size distribution pattern changes as a population grows or time t 
passes. For this purpose we have only to get the time rate of changes in at least 
(x) (mean), #z2 (variance) and #z3. We can know the approximate shape of size 
distribution curve from the value of skewness 3' given by 

y = #£311d, 312. (18) 

Positive y represents L-shaped distribution, negative y J-shaped distribu- 
tion, and zero y symmetrical distribution. 
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I f  O(t, x) is given as equa t ion  (10) with c~(t) = 0 and D(t, x) as equa t ion  
(11), we have skewness  in the explicit  fo rm as a func t ion  o f  t ime t: 

"~ : {/23 q- F2( t)} e ( 3 / 2 ) B ( O /  { / 2 2  "}- Ft( t)} 3/2, (19) 

where  

I f A(t) = b~(s) ds, B(t) = ca(s) ds, 
t o to 

{ f  I (x)(t) = (2) + e-A(')a~(s) ds e a~'~, (2) = (x)(to), 
• J I  o ) I' F,(t) = e-('-A~')+B(S'D(s, (X)(S)) ds, 

t O 

/z2(t) = {/22 + F,(t)} e 2a(')+nu), /22 = P-2(to), 

f' 
F2(t) = 3 e-3(a~'~÷n(~))Dx(s, (x)(s))lx2(s) ds, 

to 

~ 3 ( 0  = {/23 + F2(t)}  e 3~'~°÷BC'', /23 ; ~ ( t o ) .  

In the s imples t  case where  D(t, x ) =  0 (no f luctuat ion in growth) ,  we have 
. i . . 3 / 2  Y = m _ ~ 2  =- ~'. There fore ,  the initial skewness  ~) is kept  t h roughou t  the 

g rowth  process.  In the case where  D(t, x)= ae(t), if  y = 0, then y = 0; if 
¢ > 0, then y decreases  toward  zero;  if  ~, < 0, then y increases  toward  zero. 
Further ,  we see that  D(t, x) posi t ively (negat ively)  cor re la ted  with size x, 
i.e. Dx(t, ( x ) ) >  0 (<0) ,  p romo te s  posi t ive (negat ive)  skewness .  No te  that  in 
these cases the initial zero skewness  is not  kept .  

I f  c~(t) # 0 in equa t ion  (10), we canno t  have  skewness  in the explici t  form 
as a funct ion  o f  t. However ,  we can know the sign o f  skewness .  We see that  

[ I' ~3(t)  = /23 +3  e-C~){D~(s, (x)(s))~2(s) 
tO 

ds/oc,,, (2o) 
J 

where  

C(t) = 3 {ca(s) + Gx(s, (x)(s))} ds, /23 =/~3(to) 
o 

In the s imples t  case where  D(t, x) = 0, if/23 -> 0 and  c~ > 0, then p.3 > 0; if 
/23-<0 and cg < 0 ,  then /~3 < 0. No te  that  f rom the initial zero skewness  
posi t ive eg genera tes  posi t ive  skewness ,  and  negat ive  cg negat ive  skewness ,  
even if D(t, x ) = 0 .  Fur ther ,  we see the s ame  effect o f  D(t, x) on skewness  
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as in equation (19). Fluctuation of growth positively (negatively) correlated 
with size promotes postive (negative) skewness. 

The analyses made in this section give the interrelationship between the 
shape of size distribution curve and the growth pattern G(t, x) and the 
variance of growth D(t, x). 

6. Discussion 

As has been reported by many researchers (e.g. Koyama & Kira, 1956; 
Kuroiwa, 1959, 1960b; White & Harper, 1970; Ford, 1975; Mohler et al., 
1978), H-, D-, and W-distributions of even-aged plant populations show 
almost zero, positive, and greater positive skewness respectively. Figures 5, 
6 and 7 show these features clearly. The experimental data of Impatiens 
balsamina L. show that H, D, and W have their specific size-dependent 
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FIG 5. (a) Plant height distribution of  Impatiens balsamina L. at each growth stage. 
Histogram, the observed;  full line, the calculated by equat ion (2). Interval o f  h is tograms is 
6 cm for all growth stages. Subscripted t indicates successive growth stages when the measure-  
ments  were made  (see Fig. 2). Nob ~ and No, I indicate the observed and  calculated total numbers  
of  plants respectively, t~, Nob,= 145; t2, Noh~= Nc,,~= 145; t3, Noh~= 126, Nc, i = 127; ta, 
Nob ~ = 109, Nca I = 113 ; t 5, Nob 5 = 96, No, 1 = 102. (b) Observed mean  ((3) and  s tandard  deviat ion 
(A) of  the above distribution. Full line indicates those values calculated by equat ion (2). (c) 
Observed skewness (C)) and kurtosis (A) of  the above distribution. Full line indicates those 
values calculated by equat ion (2). 
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FIG. 6. (a) Stem diameter  distribution of  Impatiens balsamina L. at each growth stage t~, 
Nob~ = 145; t2, Nobs = Neat = 145; t~, Nobs= 126, Ncal = 124, t4, Nobs = Neat= 109; ts, No~,~ = 
Nea ~ = 96. Symbols as in Fig. 5. Interval of  h is tograms is 1.0 m m for all growth stages. (b), (c) 
As in Fig. 5. 

growth pattern (Figs 2, 3 and 4). The model proposed in this paper reveals 
the close interrelationship between these two phenomena. Size distribution 
pattern is determined by size-dependent growth pattern, mainly G(t, x). In 
the case where fluctuation of growth, i.e. D(t, x) is strongly correlated with 
size x, D(t, x) affects size distribution pattern. The effect of D(t, x) can also 
generate positive or negative skewness. Note that D(t, x) independent of 
size x does not affect/zs. We can explain by the fluctuation of growth or 
D(t, x) the part that cannot be explained only by the continuity equation (8). 

The fundamental condition for a diffusion process is the Markov property. 
It states that the future state is determined only by the present state and 
independent of the previous states. It is a question whether this property 
rigorously holds in the case of individual plant growth in a stand. The whole 
growth period of Impatiens balsamina L. in this experiment was about 70 
days, and the time interval between two successive measurements was 10 
days. I asume that the size l0 days later is determined almost solely by the 
present size but hardly affected by the size l0 days before. This assumption 
needs further investigation, but I think it is reasonable as a first approxima- 
tion. Therefore, we can assume the Markov property and get the Kolmogorov 
forward equation as a first approximation. This is also supported by the 
good agreement between the calculated results and the experimental data 
(Figs 5, 6 and 7). 
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FIG. 7. (a) Individual plant weight distribution of Impatiens balsamina L. at each growth 
stage. Symbols as in Fig. 5. Interval of  histograms is 0.01 g for t I and 0.1 g for t2- t  5 tj ,  
Nob ~ = 145; tz, Nobs = 145, N~l = 144; t3, No~,s= 126, N ~ I =  120, ta, Nobs = 108, Nca 1 = 105; ta, 
Nob ̀  =94,  N=~ = 105. A few individuals greater than 1.0g are excluded from the calculation. 
Therefore, Noh~s do not coincide with those of Figs 5 and 6. (b), (c) As in Fig. 5. 

(A) SIMULATION OF THE DYNAMICS OF SIZE DISTRIBUTION PAI-FERN 

We solve equation (2) numerically to simulate the dynamics of  size 
distribution pattern by using the explicit functions of  G(t, x), D(t, x) and 
M(t ,x )  (equations (10), (11) and (12), respectively) obtained from the 
experimental data. We scale size x and time t to dimensionless 0 - - x - -  1-0 
and 0 - -  t <-4.0, and employ the implicit finite difference method with Ax = 
0-025 and At = 0-001. The initial conditions are the observed distributions 
of  the first stage, and the boundary conditions are f(t ,  0) = 0 and f(t ,  1.0) = 0 
for any t >-0. Calculated size distributions and some statistics agree well 
with the observed ones (Figs 5, 6 and 7). 

(B) MOMENT DYNAMICS IN THE EXPERIMENT 

In my experiment with Impatiens balsamina L. tt, t ime period o f  the first 
measurement,  was 24 days after sowing.  Considering the whole  growth 
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period (about 70 days), it is rather the early middle stage. Skewness of  
H-distribution is negative at G, first increases to zero, and then keeps a 
constant value, zero (Figs 5, 8). The increase of  skewness at t~ - t3 is explained 
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FIG. 8. Effect of mortality rate M(t, x) on skewness, SD and/z  3. - -  with solid symbols 
indicates those values for self-thinning population calculated by equation (2) with the same 
coefficients, G(t, x), D(t, x) and M(t, x) as in Figs 2, 3 and 4 (the same results as in Figs 5, 6 
and 7); - - -  with open symbols indicates those values for non-self-thinning population 
calculated in the same way but with M(t, x ) =  O. Subscripted t indicates successive growth 
stages. At t~-t 2, self-thinning does not occur. Circle, plant height (H); triangle, stem diameter 
(D);  square, individual plant weight (W). (a) Skewness of /4 ,  D and W; (b)/zj  of H and D; 
(c)/~3 of W; (d) SD of H and D;  (e) SD of W. In (c), (d) and (e), closed and open symbols 
are almost indistinguishable graphically. 

only by D(t, x) which is positively correlated with size x, because G(t, x) 
with c~(t)= 0 keeps skewness constant (Figs 2 and 3). This is generated by 
the stochastic factor D(t, x), not by the deterministic one G(t, x), therefore, 
this is not explained by the continuity equation (8). The constant skewness, 
zero, at t3-  t5 is attributed to G(t, x) with Cg(t) = 0 and D(t, x) independent 
of size x (Figs 2 and 3). D- and W-distribution show the same time trend 
of  change in skewness, though W has greater skewness than D. Both D 
and W show increase in positive skewness from the initial zero skewness 
in the first stage. This is explained by the growth pattern G(t, x) with positive 
cg(t). In the following stages, their skewnesses decrease. This phenomenon 
was reported by Mohler et al. (1978) and Kohyama & Fujita (1981) for 
self-thinning populations. Mohler et al. 0978)  claimed that intensive self- 
thinning brings about this phenomenon. 1 attribute this decrease in my 
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experiment to equation (10) with negative %(0 and to equation (11) with 
negative ca(t) for D, and to equation (10) with bg(t), %(0 =0 and equation 
(II) with negative ca(t) for W (Figs 2 and 3). 

(C) THE EFFECT OF S E L F - T H I N N I N G  ON THE M O M E N T S  

Mortality rate M(t, x) obtained from my experimental data are almost 
independent of time t. Whether this relationship is general or not is a 
question, because the intensity of self-thinning was very low in this experi- 
ment (from 145 to 96 plants). I think more intensive self-thinning will 
generate time-dependent M(t, x). This low mortality rate M(t, x) hardly 
affects skewness (Fig. 8). But a non-self-thinning population has slightly 
greater skewness than a self-thinning one. Difference is markedly clear in 
tz3, while the time trend is parallel. Standard deviation is hardly affected 
by M(t, x). Set k = 2 in e_q_yation (17), and the last term vanishes. Thus, the 
standard deviation (=4/z2) is less affected than /z 3 by M(t,x).  I think 
intensive self-thinning, i.e. high mortality rate M(t, x) affects the growth 
and size distribution pattern and reduces skewness. It is clear from equations 
(16) and (17) that M(t, x) independent of size x does not affect the moments. 

(D) N O N - I N T E R A C T I N G  POPULATIONS 

Consider a population where individuals are located so far apart that 
they do not interact with each other. For the simplest growth equation for 
an individual size x, we employ the exponential equation, 

d x  
-~ = r(t)x, (21) 

where r(t) is relative growth rate (RGR) dependent on time t. Let ~:(t) be 
random perturbation approximated by the Gaussian white noise subject to 
the conditions, 

(~(t)) = 0, (~:(t + r)~:(t)) = 8(r), (C2) 

where ( ) indicates average taken over a suitable ensemble. 
If RGR fluctuates in equation (21), we have the fluctuation equation, 

dx 
dt {~(t)+~r~(t)}x, (22) 

We get the Kolmogorov forward equation corresponding to equation (22) 
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(the Stratonovich calculus is used); its coefficients are 

D(t, x) = o-2x 2, (23) 

G(t, x) = {~(t) +½cr2}x. (24) 

where ~(t)= (r(t)), and 0 -2 is the intensity coefficient. 
The growth pattern given by equation (24) does not generate positive 

skewness from the initial zero skewness, but it keeps the initial skewness 
throughout the growth period. The presence of D(t, x) given by equation 
(23) generates positive skewness. If ?(t) = r = constant, the solution to this 
Kolmogorov forward equation is analytically obtained as follows: 

f ( t , x ) _ l  [ 1 ] 0-xx/2-~ exp - 20-2--- ~ (log x - l o g  Xo - rt) , (25) 

under the initial condition f(0, x) = •(Xo). 
Equation (25) is a log-normal distribution showing positive skewness, 

y = [exp (0-20 - 1] 3/2 +3[exp (0-2t) - I] j/2. (26) 

Large values of o- generates large positive skewness; skewness increases as 
time t passes. Koyama & Kira (1956) showed the appearance of positively 
skewed distribution in a non-interacting population by the model calculation 
(their C-N complex model). Their model calculation can be interpreted as 
the model described by equation (22). 

If growth rate (dx/d t) fluctuates in equation (21), we have the fluctuation 
equation, 

dx 
dt r(t)x +o'S(t). (27) 

Coefficients of the corresponding Koimogorov forward equation are 

D(t, x) = 0-2, (28) 

GO, x) = r(t)x. (29) 

In the growth process governed by the Kolmogorov forward equation with 
equations (28) and (29), the initial zero skewness is kept, or skewness 
converges toward zero from the initial non-zero skewness. 

Note that fluctuation of RGR generates positive skewness, but that 
fluctuation of growth rate does not. We saw that the growth pattern G(t, x) 
with positive %(t) generates positive skewness, and that D(t, x) positively 
correlated with size x can also generate positive skewness. There are two 
independent factors generating positive skewness; one is the deterministic 
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(growth pattern G(t, x)) in the interacting populations, and another the 
stochastic (variance of growth D(t, x)) in the non-interacting populations. 

(E) A BASIC PROPERTY OF PLANT GROWTH IN A STAND 

H shows almost normal distribution, which is generated by the growth 
pattern specific to H. Roughly speaking, RGR of H is almost a constant 
independent of size. The most important factor in the intraspecific competi- 
tion is light (Kuroiwa, 1960a, b). Individual plant height is crucial for the 
competition, because tall plants can obtain more light for photosynthesis 
than short ones. Normal distribution of H is the natural outcome of equal 
chance for obtaining light. I present the following hypothesis about the 
basic property of individual plant growth in a stand: dry matter production 
by photosynthesis, which is partitioned to stem, is first allocated to height 
growth after equation (10) with c~(t)=0, i.e. to maintain a normal H- 
distribution, and then to diameter growth. Short plants must consume their 
small dry matter production; which is caused by the shorts of light, for height 
growth at the cost of diameter growth. Tall plants which obtain more dry 
matter production can have the surplus for diameter growth in addition to 
height growth. Thus, short plants are very small in stem diameter or plant 
weight as compared to tall ones. This method of dry matter allocation will 
generate normal H-distribution and positively skewed D- and W-distribution 
which are made up of a large number of small plants and a few large plants. I 
suggest such size distribution patterns are the outcome of the basic property of 
individual growth in the interacting plant populations. 

I thank Professors S. Kuroiwa and E. Teramoto, Drs H. Tabata and Y. Iwasa, 
and Mr T. Takada for their critical reading of the manuscript. Thanks are also due 
to Messrs S. Tomita, I. Kojima, and K. Matsui. All the results were calculated at the 
Data Processing Center, Kyoto University. 
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